

Published on 30 November 2020

COMING TO TERMS WITH SMART CONTRACTS
PART 1 – FINTECH SECURITY CHALLENGES AND

CONSIDERATIONS

[2020] SAL Prac 23

As the adoption of smart contracts in fintech and other
applications continues to gain traction, concerns about
security and reliability of their ecosystem and the legal
certainty of the transactions themselves are growing.
These two sets of issues will be examined in two parts:
this first part will provide a brief description of the
smart contract ecosystem, the significant security risks
attendant thereto, and discuss a number of best practices
ahead of smart contract adoption, to mitigate such risks.
The second part will follow up and focus more sharply on
the legal nature and enforceability of smart contracts and
algorithmic contracts, the notion of “code is law”, and
the ramifications for smart contracts given the landmark
decision of the Singapore Court of Appeal in the case of
Quoine Pte Ltd v B2C2 Ltd [2020] 2 SLR 20.

TEO Yi-Ling
LLB (Liverpool); LLM (Northwestern University, Chicago);
Barrister-at-Law (Middle Temple); Advocate and Solicitor (Singapore);
Senior Fellow, Centre for Excellence for National Security, S Rajaratnam School
of International Studies, Nanyang Technological University

“If code is law, then there’s no greater truth than what you’ve
got, and if it’s got bugs in it, then you’re screwed.”

– Emin Gün Sirer1

I.	 Introduction

1	 The concept of smart contracts is engendering more
mainstream debate – the advent of blockchain technology
has been an enabler of smart contracts, a financial technology

1	 Laura Shin, “What Does Cornell’s Emin Gun Sirer See as the Main Security
Threats in Cryptocurrency? ‘Everything’” Forbes (4 October 2016).

© 2020 Contributor(s) and Singapore Academy of Law.
No part of this document may be reproduced without permission from the copyright holders.

[2020] SAL Prac 23

SAL Practitioner

(“fintech”) innovation which appears to be disrupting traditional
contract formation and management. With the prospect of
financial returns to be made, many are keen to explore how smart
self-executing contracts may be adopted as a fintech innovation.
Hints of this were evident in the case of Quoine Pte Ltd v B2C2 Ltd2
(“B2C2”) where automated trading led to difficult legal issues
being raised, and legal practitioners would hence do well to have
a better understanding of the security and other risks posed by
smart contracts. In discussing smart contracts, it will be necessary
at the outset to explain what they are, how they came about and
the purported benefits of their adoption, as well as the technology
driving their function.

II.	 Timelines and terminology

2	 In 1994, Nick Szabo (a cryptographer), conceived of the idea
of recording contracts in the form of computer code. Such contracts
would be executed automatically when certain conditions are met.
This had the aim of removing the function of intermediaries and
trusted third-party institutions, such as lawyers and banks. Instead,
the contracts (or transactions) would be automatically executed
on a network of distributed trust that is completely controlled by
computers. At such time, blockchain technology as it is known
now did not exist. In 2009, Satoshi Nakamoto, the alias used by
the individual or entity that developed the cryptocurrency Bitcoin,
outlined the blockchain technology of a decentralised ledger system
and introduced the first use of it: using it to power the creation,
distribution, trading, and storing of Bitcoin.3 A blockchain is
a huge digital ledger of economic transactions that is able to record
anything that can be captured in digital form. Blocks of information
of transactions (date and time, amount, addresses of sender and
recipient, and information distinguishing one block from another)
are linked together through a complex process of cryptographic
verification known as “hashing”, forming a technically irreversible

2	 [2020] 2 SLR 20.
3	 Jake Frankenfield, “Bitcoin” Investopedia (11 May 2020) <https://www.

investopedia.com/terms/b/bitcoin.asp> (accessed 30 July 2020).

© 2020 Contributor(s) and Singapore Academy of Law.
No part of this document may be reproduced without permission from the copyright holders.

Coming to Terms with Smart Contracts
Part 1 – Fintech Security Challenges and Considerations

[2020] SAL Prac 23

and unchangeable chain.4 Hashing entails generating a string of
characters from another string of characters (derived from listing
transactions in sequence), using a mathematical function. It has
the effect of standardising data and ensuring that it has not been
interfered with. If there was an attempt to alter a transaction in
the blockchain, the transaction would have to undergo rehashing,
which would make it look different – and would be evidence of
tampering.5 Hashing is at the heart of blockchain security,6 as will
be examined further down in this paper.

3	 Blockchain seeks to replace institutions with technology
that can accomplish the roles of intermediaries and institutions
far more efficiently – centralised institutional power transforming
to decentralised regulatory power, where trust is formed through
consensus. A blockchain is governed by a protocol that prescribes
how the computers in the network, known as nodes, have to verify
new transactions and add them to the database. The protocol
uses cryptographic techniques, economics, and game theory to
incentivise each node to focus on securing the network rather
than exploiting it for personal gain.7 Further, the fundamental
distributed ledger characteristic makes the blockchain effectively
immutable, since thousands of independent and up-to-date copies
of this ledger reside on each computer on the network.8 While
blockchain technology began when it was designed especially for
Bitcoin and for advancing the adoption of cryptocurrencies, it has
since gone on to be used in a wide variety of industries outside
of fintech.

4	 The theory is that as new blocks are being created over time, hacking the
network becomes progressively more difficult.

5	 Alan T Norman, Blockchain Technology Explained (CreateSpace Independent
Publishing Platform, 2017) at p 41.

6	 Alan T Norman, Blockchain Technology Explained (CreateSpace Independent
Publishing Platform, 2017) at p 43.

7	 Mike Orcutt, “Once Hailed as Unhackable, Blockchains are Now Getting
Hacked” MIT Technology Review (19 February 2019).

8	 Alan T Norman, Blockchain Technology Explained (CreateSpace Independent
Publishing Platform, 2017) at pp 20–21.

© 2020 Contributor(s) and Singapore Academy of Law.
No part of this document may be reproduced without permission from the copyright holders.

[2020] SAL Prac 23

SAL Practitioner

III.	 Ethereum and smart contracts

4	 Having explained what blockchain entails, we now
reconnect it to the functioning of smart contracts, and how this
came about with the advent of another cryptocurrency platform.
Ethereum is a decentralised, open-ended computing platform9
which debuted in July 2015. Generating a cryptocurrency token
known as ether (abbreviated as ETH), Ethereum has its own coding
language which operates off a blockchain, enabling developers to
build and run distributed applications. Decentralisation means that
once a developer has built an application, it cannot be removed by
any authority. For as long as the Ethereum blockchain persists, so
will the application.10

5	 Powered by ETH, Ethereum has the potential for a wide
range of applications: alongside it being traded as a digital
currency, it is used on the Ethereum system to run applications.11
The smart contract is the basic building block of the Ethereum
decentralised platform, and programmers can write smart
contracts on the Ethereum blockchain using Solidity, a high-
level, Turing-complete programming language. Smart contracts
are essentially a computer protocol – a set of rules for the
transmission of data between computers – intended to digitally
facilitate, verify, or enforce the negotiation or performance of a
contract.12 A smart contract executes according to how it is coded,
without any downtime, fraud, control, or interference from a third
party. Smart contracts are “second-layer” applications,13 and to
the extent that the technical structure and rules of the blockchain
support this, have the same type of immutability of the underlying
blockchain infrastructure enabling their self-executing nature. As a

9	 Ethereum website <https://ethereum.org/> (accessed 1 July 2020).
10	 Alan T Norman, Blockchain Technology Explained (CreateSpace Independent

Publishing Platform, 2017) at p 25.
11	 “What is Ethereum – Guide for Beginners” Cointelegraph.
12	 Ameer Rosic, “Smart Contracts: The Blockchain Technology That Will

Replace Lawyers” Blockgeeks (2016) <https://blockgeeks.com/guides/smart-
contracts/> (accessed 2 July 2020).

13	 Second-layer or Layer 2 refers to a secondary framework or protocol that
is built on top of an existing blockchain system. The main aim of this is to
resolve transaction speeds and scaling challenges currently being experienced
by the major cryptocurrency systems.

© 2020 Contributor(s) and Singapore Academy of Law.
No part of this document may be reproduced without permission from the copyright holders.

Coming to Terms with Smart Contracts
Part 1 – Fintech Security Challenges and Considerations

[2020] SAL Prac 23

multiplicity of blockchain nodes operate smart contract code,
it “is not controlled by—and cannot be halted by—any single
party”.14 This has the goal of building trust in the system and using
a blockchain also means that these transactions are recorded on
a public database and trackable.

IV.	 Purported benefits of smart contracts

6	 Proponents of smart contracts claim that a range of
contractual terms could be made partly or fully self-executing
and/or self-enforcing,15 thus removing the need for lawyers and
the courts to enforce performance. The use of smart contracts is
touted as promising certain advantages:

(a)	 Accuracy. In setting up a smart contract, all
relevant information regarding the contract is expressed
in the conditional if-then statements format of trigger
events (if A pays B price X by date Y, then B performs its
obligation).16 A fundamental requirement of setting up
a smart contract is the explicit detailing of all terms, so the
conditional if-then format works.17

(b)	 Transparency and clarity of communication.
It follows from the above point that as the terms and
conditions are explicit, visible, and therefore clearly
communicated, execution is transparent, contractual
certainty is promoted, and issues of fraud are eliminated.

(c)	 Efficiency. As smart contracts self-execute
upon the trigger events (date, time, action by one party)
occurring, the need for human intervention/verification to
move the execution process is eliminated, and execution is
accomplished more swiftly.

14	 Primavera De Filippi & Aaron Wright, Blockchain and the Law (Harvard
University Press, 2018) at p 29.

15	 See generally Smart Contracts Alliance & Deloitte, “Smart Contracts: 12 Use
Cases for Business and Beyond” Chamber of Digital Commerce (2016).

16	 Silas Nzuva, “Smart Contracts Implementation, Applications, Benefits, and
Limitations” (2019) 9(5) Journal of Information Engineering and Applications 63
at 71.

17	 Essentially, this is a critical requirement because transaction errors may
emanate from any omission.

© 2020 Contributor(s) and Singapore Academy of Law.
No part of this document may be reproduced without permission from the copyright holders.

[2020] SAL Prac 23

SAL Practitioner

(d)	 Security. Blockchain technology apparently
employs the most secure cryptography methods currently
available for cryptocurrency transactions, so smart
contracts deployed on a blockchain also benefit from the
same standards. Execution is further secured by the fact
that all nodes on a blockchain network are validating and
verifying the transactions.

(e)	 Cost reduction. Smart contract adoption
theoretically removes the need for middlemen, thereby
reducing costs and improving efficiencies.

7	 Despite these purported advantages, it is critical to note
that these are not automatic givens. For instance, the execution
and desired output of the contract are both highly dependent
on the quality of the input, ie, the explicitness of the terms and
their coding.18 The ensuing discussion will demonstrate that these
benefits are idealistic in the main, and not automatic givens.
Two overarching observations are made: Firstly, smart contract
creation is not truly free of the intermediation it seeks to obviate,
and even less so in the event of malfunction. Secondly, there is
a multiplicity of weaknesses that can arise into its development
and deployment. These observations will be elaborated in the
examination of the systemic security vulnerabilities in the
ecosystem of smart contracts – the issues that need to be borne in
mind when contemplating smart contract adoption. In doing so,
it may be instructive to first briefly describe the topology of the
Ethereum system to provide a framework for understanding where
the vulnerabilities arise.

V.	 The Ethereum ecosystem topology

8	 There are several integrated layers in Ethereum:19

(a)	 the applications/second layer is where Ethereum
users deploy smart contracts linked to Ethereum accounts;

18	 Errors in the coding will trigger incorrect and unwanted results.
19	 Huashan Chen et al, “A Survey on Ethereum Systems Security: Vulnerabilities,

Attacks, and Defenses” (2020) 53(3) ACM Computing Surveys (CSUR) 1 at 3.

© 2020 Contributor(s) and Singapore Academy of Law.
No part of this document may be reproduced without permission from the copyright holders.

Coming to Terms with Smart Contracts
Part 1 – Fintech Security Challenges and Considerations

[2020] SAL Prac 23

(b)	 the data layer is where the blockchain data
architecture is housed;

(c)	 the consensus layer provides the infrastructure
for maintaining an immutable sequence of transaction
blocks – the consistent blockchain state;

(d)	 the network layer is where the Ethereum P2P
network of nodes or clients is found; and

(e)	 the environment serves the above four layers via
a web user interface that interacts with applications,
databases, cryptographic mechanisms, and the Internet.

9	 For the purposes of this discussion, focus will be given to
the key layers that constitute the Ethereum system: the consensus
layer, the applications/second layer including the coding syntax of
smart contracts (in this case, Solidity), and the environment. The
observation must be made that vulnerabilities exist in the other
layers, but a technical discussion of these is beyond the scope of
this paper.20

VI.	 Consensus layer vulnerabilities

10	 As a disruptive technology, blockchain presents new
security challenges: it has shifted the means of protection from
a centralised basis to a decentralised one, assets and their means
of protection have been subsumed into a single token, digital
wallets are demonstrably easy to exploit, and transactions effected
by bad actors may be immediate and incapable of being reversed.21
There have been several high-profile hacks involving blockchain
and cryptocurrency in the last few years. Examples are the 2014
hack of the Mt Gox Bitcoin exchange where almost half a billion US
dollars’ worth of Bitcoin was stolen from it, the 2016 hack of the
Decentralised Autonomous Organisation (“DAO”), an application

20	 Interested readers may refer to the article cited at n 19 above by Huashan
Chen et al which provides a technically granular discussion of Ethereum
system vulnerabilities.

21	 John Velissarios, Justin Herzig, and Didem Unal, “Believe It or Not:
Blockchain’s Potential Starts With Security” Accenture (2019) at p 3
<https://www.accenture.com/_acnmedia/PDF-96/Accenture-Blockchain-
Technology-Security-PoV-Digital.pdf> (accessed 6 August 2020).

© 2020 Contributor(s) and Singapore Academy of Law.
No part of this document may be reproduced without permission from the copyright holders.

[2020] SAL Prac 23

SAL Practitioner

built on the Ethereum blockchain resulting in the theft of close to
US$70m worth of Ether, and the hack of the Hong Kong Bitcoin
exchange Bitfinex in 2017 resulting in the loss of US$72m.22
Naturally, these hacks have given rise to the notion that they were
due to vulnerabilities with blockchain, but in fact they were mostly
due to vulnerabilities within the smart contract or application
architectures built on the blockchain. These will be explored in the
section below that discusses smart contract vulnerabilities.

11	 The fundamental notion of blockchain technology is that
because of the way it is created, unless someone controls a major
part of the computational power of the blockchain, control of the
network or adding fraudulent blocks is not possible. It means it is
theoretically near impossible to hack it – the hacker would need to
compromise more than half of the nodes if it wanted to attack the
blockchain or the smart contracts running on it. This is known as
a “proof-of-work 51% attack”.23 As was noted above, hashing is at
the heart of blockchain security. In order to augment the security
effect of hashing, and as the blockchain is consensus-based, more
complexity is added by introducing aspects that would reinforce
honesty, penalise fraudulent activity, moderate block creation, and
slow down hackers. This is the strategy known as “proof-of work”
and is accomplished by giving nodes the chance to solve a complex
computational problem. For every block that is successfully mined,
Ethereum incentivises its miners (those nodes that choose to
compete in solving the problem, and so-called as they “hammer
away” until they solve it) with transaction fees and new ether, and
this promotes behaviours towards securing the blockchain, rather
than compromising it.24 Further, as the blockchain is decentralised,
there is the absence of inherent or central points of failure
preventing compromise of an entire population of end users.

12	 In terms of the blockchain, although it has demonstrated
itself to be mostly tamper-resistant, it has shown greater

22	 Fintechnews Singapore, “A Look Back on Some of the Most Devastating
Crypto Hacks”.

23	 Binance Academy website, “What Is a 51% Attack?” <https://academy.binance.
com/security/what-is-a-51-percent-attack> (accessed 6 Aug 2020).

24	 SFOX website, “How Secure is Ethereum?” (11 September 2018) <https://blog.
sfox.com/how-secure-is-ethereum-c271af4f00c0> (accessed 15 June 2020).

© 2020 Contributor(s) and Singapore Academy of Law.
No part of this document may be reproduced without permission from the copyright holders.

Coming to Terms with Smart Contracts
Part 1 – Fintech Security Challenges and Considerations

[2020] SAL Prac 23

vulnerability to hacking of late. Beginning in 2018, 51% proof-
of-work attacks – until then more often referenced as a theory
of how a blockchain could be hacked – began to occur with
increasing frequency.25 Hackers in a few instances turned their
attention to smaller coin networks with fewer miners and lower
trading volumes. The lack of miners on these networks proved to
be a vulnerability, allowing such 51% attacks to take place. One
of the more significant and recent attacks was the one sprung
on the Ethereum Classic blockchain in January 2019. Although it
had been detected that the attacker had somehow gained control
of more than half of the blockchain’s computing power and was
rewriting its transaction history, it was too late to prevent the
“double spend” of ether for the value of US$1.1m.26 Since the uptick
in these 51% attacks, Ethereum is working on shifting to proof-of-
stake as a means of deterring malicious attacks. Instead of being
rewarded for successfully mining blocks (proof-of-work), proof-
of stake will require network nodes to “mint” blocks. Nodes that
have significant staking (the number of ETH staked) have a higher
chance of proposing and validating blocks. It follows that the
reward for the node on successful validation is premised on the
size of the stake. If a validating node attempts to maliciously attack
the blockchain function, it stands to lose part of or the entirety of
its stake – this is the deterrence.27

VII.	 Application/second layer vulnerabilities

A.	 Smart contract bugs

13	 The next ecosystem layer to consider for vulnerabilities
is the applications/second layer, on top of the blockchain. In
Ethereum, this is the layer where the smart contracts exist. In
conventional software development, a software bug is easily
resolved by an update – writing new code to patch the vulnerability
and prevent future exploits by it. However, patching cannot be

25	 Alyssa Hertig, “Blockchain’s Once-Feared 51% Attack Is Now Becoming
Regular” Coindesk (8 June 2018).

26	 Mike Orcutt, “Once Hailed as Unhackable, Blockchains are Now Getting
Hacked” MIT Technology Review (19 February 2019).

27	 Robin Percy, “Ethereum 2.0 - What is Proof of Stake?” Status (16 July 2020).

© 2020 Contributor(s) and Singapore Academy of Law.
No part of this document may be reproduced without permission from the copyright holders.

[2020] SAL Prac 23

SAL Practitioner

accomplished with smart contracts, as they are fundamentally
immutable. A fix in some instances is creating new smart contracts
to interact with the ones with bugs.28 Developers can also include
a “self-destruct” or “suicide” function in a smart contract that
can be triggered to kill it and halt all transactions upon detection
of a hack. This though will prove too late for those users who have
already suffered losses.29 This function is also used when a smart
contract requires upgrading – kill the old version and deploy a new
one. However, there are some concerns among developers that
including a suicide function may result in an exploitable attack
vector or add complexity (and more bug testing) to contract code,
or they may object to this function on the grounds of preserving
smart contract immutability and the associated distributed trust.30

14	 Briefly mentioned above, the most significant application
that was built on the Ethereum blockchain was the DAO. This was
a cryptocurrency and venture capital project around streamlining
decision-making, voting, and funding projects. In April 2016, the
DAO was launched on Ethereum. It was enormously successful –
by June 2016, it had raised US$150m. In that same month, experts
had highlighted vulnerabilities in its underlying code and had
called for a moratorium to the DAO’s operation.31 A week later, an
attacker siphoned more than US$60m worth of ether by exploiting
an unforeseen bug in a smart contract that governed the DAO. Note
that given the public nature of the blockchain, smart contract bugs
will be detectable and susceptible to exploitation by hackers.32
Essentially, the bug – a recursive calling vulnerability33 – enabled

28	 Xiao Liang Yu et al, “Smart Contract Repair” (May 2020) ACMTrans. Softw.
Eng. Methodol.1, 1.

29	 Mike Orcutt, “Once Hailed as Unhackable, Blockchains are Now Getting
Hacked” MIT Technology Review (19 February 2019).

30	 Jiachi Chen et al, “Why Do Smart Contracts Self-Destruct? Investigating the
Selfdestruct Function on Ethereum” (January 2016) 1, 1, Article 1 pp 1–27
at p 10.

31	 Laura Shin, “What Does Cornell’s Emin Gun Sirer See as the Main Security
Threats in Cryptocurrency? ‘Everything’” Forbes (4 October 2016).

32	 Mike Orcutt, “Once Hailed as Unhackable, Blockchains are Now Getting
Hacked” MIT Technology Review (19 February 2019).

33	 In programming terms, a call is an invocation of a routine in a programming
language. A recursive call is one where the routine calls itself directly or
indirectly, enabling the repeated execution of a command sequence. Vitalik
Buterin had announced the attack, identified the recursive calling bug, and

(cont’d on the next page)

© 2020 Contributor(s) and Singapore Academy of Law.
No part of this document may be reproduced without permission from the copyright holders.

Coming to Terms with Smart Contracts
Part 1 – Fintech Security Challenges and Considerations

[2020] SAL Prac 23

the hacker to keep withdrawing money from accounts, and the
system not recognising that these withdrawals had been made.
Philip Daian, smart contracts and cryptocurrency researcher
at Cornell Tech, made the following observation in a blog post
unpacking the modus operandi behind the DAO hack and the
recursive bug:34

This is probably why this exploit was missed in review so many
times by so many different people: reviewers tend to review
functions one at a time, and assume that calls to secure subroutines
will operate securely and as intended.

15	 In response to the attack, the Ethereum developer
community (and with the approval of the DAO shareholders,
voted to put in a “hard fork” in the system to allow token holders
to retrieve their money: to return the point on the network prior
to the attack, deploy a fork to a new blockchain, and get the
consensus of everyone on the network to use the new blockchain.35
This course of action was not easily arrived at as it essentially
posed an existential question as regards Ethereum: a foundational
tenet is the decentralised nature of the platform where power is
distributed among its users. Should the Ethereum organisation
intervene to resolve the issue, it would be technically undermining
the raison d’etre of the platform. This solution of a deploying a hard
fork generated a heated debate between those who sought retrieval
of the funds, and the “code is law” orthodoxy wishing to uphold
the immutability of smart contracts.36

B.	 Oracles

16	 As the blockchain and its smart contracts are unable to
access data external to their network, they require a third-party
service to feed relevant information to smart contracts for them to
trigger the execution of pre-defined actions. This is accomplished

his proposals of a soft and/or hard fork to remedy the situation: see Vitalik
Buterin, “Critical Update Re: DAO Vulnerability” Ethereum Blog (17 June 2016).

34	 Philip Daian, “Analysis of the DAO Exploit” Hacking, Distributed (18 June 2016).
35	 Joon Ian Wong & Ian Kar, “Everything You Need to Know About the Ethereum

‘Hard Fork’” Quartz (18 July 2016).
36	 Robbie Morrison, Natasha CHL Mazey, and Stephen C Wingreen, “The DAO

Controversy: The Case for a New Species of Corporate Governance?” frontiers
in Blockchain (27 May 2020).

© 2020 Contributor(s) and Singapore Academy of Law.
No part of this document may be reproduced without permission from the copyright holders.

[2020] SAL Prac 23

SAL Practitioner

by using a medium called an oracle.37 Invoking the smart contract
initiates calling for the information via the oracle. Sources of such
external data can be from big data applications or the Internet-
of-Things. Although oracles interact with the blockchain and
smart contracts, being third-party services they are external
to the blockchain platform and do not benefit from the security
mechanism built into it. Given that the data being fed to the smart
contract via the oracle needs to be trustworthy, herein lies a security
vulnerability in this link for a “man-in-the-middle” exploit.

VIII.	 Solidity syntax vulnerabilities

17	 Where it concerns vulnerabilities in cryptocurrencies, it
appears to be a trade-off between flexibility and security: the more
flexibility that is given to developers on the blockchain, the more
vulnerable the network becomes.38 The programming languages
used on Ethereum – most commonly Solidity – have flexibility
built into their design, which permits developers to create almost
any sort of application they wish.39 Flexibility of programming
may have well been a key factor in significant Ethereum-
related security breaches in recent years. Atzei et al investigated
a series of attacks on smart contracts and identified 12 potential
Ethereum vulnerabilities – and of these 12, they attributed six to
the programming language Solidity. They highlighted that much
of Ethereum’s ecosystem vulnerabilities stem from Solidity.40
Spotlighting the DAO hack once again, Daian said that:41

[The DAO] contract, even if coded using best practices and the
following language documentation exactly, would have remained
vulnerable to attack. … [T]his was actually not a flaw or exploit in

37	 Naveen Joshi, “Blockchain Smart Contracts are Finally Solving the
‘Oracle Problem’: Can Smart Contracts Go Mainstream Now?” Allerin
(1 February 2019).

38	 SFOX website, “How Secure is Ethereum?” (11 September 2018) <https://blog.
sfox.com/how-secure-is-ethereum-c271af4f00c0> (accessed 15 June 2020).

39	 This is unlike the programming language of Bitcoin which is designed for
narrow and specific purposes.

40	 Nicola Atzei, Massimo Bartoletti & Tiziana Cimoli, “A Survey of Attacks
on Ethereum Smart Contracts (SoK)” (2017) 10204 Proceedings of the
6th International Conference on Principles of Security and Trust 164.

41	 SFOX, “How Secure is Ethereum?” (11 September 2018) <https://blog.sfox.
com/how-secure-is-ethereum-c271af4f00c0> (accessed 15 June 2020).

© 2020 Contributor(s) and Singapore Academy of Law.
No part of this document may be reproduced without permission from the copyright holders.

Coming to Terms with Smart Contracts
Part 1 – Fintech Security Challenges and Considerations

[2020] SAL Prac 23

the DAO contract itself… Solidity was introducing security flaws
into contracts that were not only missed by the community, but
missed by the designers of the language themselves.

18	 In their article “Defects and Vulnerabilities in Smart
Contracts, a Classification using the NIST Bugs Framework”,
Dingman et al note that there were a number of factors causing
errors in smart contract execution that could be directly attributed
to the Solidity syntax:42

While appearing similar to JavaScript, Solidity executes many of
its features in peculiar ways. Much of the vulnerabilities seem to
be caused by a disconnect between the semantics of the language
and the intuition of the programmers.

IX.	 The Ethereum environment

19	 A common vulnerability here is using weak passwords for
decentralised applications running on the blockchain. Passwords
that are susceptible to compromise are those that are reused, low-
entropy, or insecurely stored. Another such vulnerability involves
unauthenticated URLs – as users are often redirected to other
webpages, unauthenticated destination URLs can be replaced
with phishing website addresses by attackers, opening users up
to exploitation.

X.	 Security risk mitigation ahead of smart
contract adoption

20	 Despite the security issues discussed above, smart contract
adoption is still viewed positively. It is a burgeoning market,43
and developers are spurred by speed-to-market motivations,
which may mean that insufficiently tested code gets released. The
security vulnerabilities discussed also demonstrate that the goal

42	 Wesley Dingman et al, “Defects and Vulnerabilities in Smart Contracts:
A Classification Using the NIST Bugs Framework” (2019) 7(3) International
Journal of Networked and Distributed Computing 121 at 122, para 2.2.

43	 Ethereum is currently the second-largest cryptocurrency platform in terms
of market capital – as at November 2020 this stands at US$52,982,493,021
with a trading volume of US$13,507,860,549 (are these numbers still
correct?).

© 2020 Contributor(s) and Singapore Academy of Law.
No part of this document may be reproduced without permission from the copyright holders.

[2020] SAL Prac 23

SAL Practitioner

of smart contract use displacing the function of lawyers is far
from becoming a reality: the attendant risks give rise to the need
for marshalling legal expertise and tools for mitigative purposes.
Below are some considerations that legal counsel and their clients
may wish to bear in mind when the development and use of smart
contracts is being contemplated.

A.	 Practical considerations

(1)	 Expertise

21	 It is arguable that smart contracts are described as
trustless – in reality, trust has effectively shifted onto developers
who author smart contracts and their expertise, and conceptually
they have a burden of trust to discharge. In weighing smart contract
adoption, it is important at the outset to perform due diligence when
choosing a developer to work with. Such a developer should have
a solid track record, be able to assess if the nature of a transaction
is one that lends itself to being coded as a smart contract, and is
aware of known security vulnerabilities and current best practices
in mitigating the same.

(2)	 Choice of scripting language

22	 Generally, smart contracts should be authored using
a scripting language that lends itself easily to code review,
verification and validation. As Solidity appears to be the scripting
language most commonly used, the most current released version
of it should be deployed in authoring as it would include bug fixes
and improvements.44

(3)	 Accuracy in coding terms

23	 What is also critical is for procuring parties to work closely
with developer vendors in clarifying the technical specifications in
authoring smart contract code. This is to ensure that the coding
meets the objectives of the smart contract use; the terms and their

44	 A useful guide of these can be found here: <https://solidity.readthedocs.io/
en/v0.7.0/security-considerations.html#security-considerations> (accessed
28 October 2020).

© 2020 Contributor(s) and Singapore Academy of Law.
No part of this document may be reproduced without permission from the copyright holders.

Coming to Terms with Smart Contracts
Part 1 – Fintech Security Challenges and Considerations

[2020] SAL Prac 23

intended effect are captured in the smart contract code, and how
possible alternative situations should be accounted for. What must
be avoided is any uncertainty within the authored code which could
deviate from the intended outcome.

(4)	 Review and testing

24	 The events of the DAO attack are a lesson here in terms of
deploying untested or badly written code. As a best practice, one
way of ensuring the intended functionality of a smart contract is
to sandbox it and check for bugs, ahead of deployment. Another
measure to consider is setting up static analysis tools to debug
source code before a programme is run, and identifying weaknesses
in the code that could lead to exploits. What is useful as well
alongside this is to subject the code to an external audit to look
for bugs.

(5)	 Insurance

25	 It is prudent to take out IT/tech errors and omissions
insurance (“E&O”), which will provide cover for a range of risks
related to the provision of technology products and services,
including coding errors, malfunctioning oracles, and inadequate
performance. E&O insurance usually covers both legal costs and
damages amounts up to the cap indicated in the insurance contract.

B.	 Legal safeguards

26	 Having the above practical considerations in mind will
lend clarity to the positions of the parties that are negotiating
an agreement for the procurement of services for smart contract
development. Such an agreement should contain the following
key provisions:

(a)	 Responsibilities of the parties for authoring and
approvals. These need to be clearly delineated in terms of
substance and clarity of terms to be coded, development
milestones, expectations as to standards of coding, periods
of review, testing processes, feedback and approvals,
readiness for release, post-release maintenance including

© 2020 Contributor(s) and Singapore Academy of Law.
No part of this document may be reproduced without permission from the copyright holders.

[2020] SAL Prac 23

SAL Practitioner

upgrades and updates, and responsibilities for any
associated costs for these aspects.

(b)	 Representations and warranties of parties.
Examples of these would be warranties as to material
functioning of the code in line with agreed specifications
(and an accompanying representation that the functioning
of the smart contract will be subject to professional testing
before release), that the code authored is original and does
not infringe third-party intellectual property rights, and
that the developer has the ability to grant the required IP
rights comprised in the code.

(c)	 Indemnities. The indemnities to include will
naturally depend on the nature of the contractual
relationship between the parties and their relative levels
of expertise in the field. Indemnities concerning the
breach of the representations and warranties described
above should be included, as well as damage sustained
due to malfunctioning of the smart contract or oracles,
and faulty coding. Should the parties bring comparable
levels of expertise to collaborate over the development, the
indemnities may be drafted in more nuanced terms.

(d)	 Responsibility for subcontractors. In the event that
aspects of developing and deploying the smart contract are
farmed out to subcontractors and third parties, the parties
to the main agreement need to ensure that such ancillary
agreements carry the same representations, warranties,
undertakings and indemnities as the main agreement.

(e)	 Privacy, confidentiality and data security. Recall
that all data in a smart contract is publicly visible to all
nodes on a blockchain, and that once coded, this cannot
be removed or hidden. For the party deploying the smart
contract, it is important to decide at the outset what level
of visibility it is comfortable with, and to choose between
using a public or private blockchain. What is good to
determine as well is what data or information is safe to
be stored on the blockchain, and what should be stored
off‑chain and remain callable when required for smart
contract execution.

© 2020 Contributor(s) and Singapore Academy of Law.
No part of this document may be reproduced without permission from the copyright holders.

Coming to Terms with Smart Contracts
Part 1 – Fintech Security Challenges and Considerations

[2020] SAL Prac 23

(f)	 Force majeure. Too often included without
considering carefully what could constitute a force majeure
event specific to the nature of an agreement, this clause
needs to take into account possible unforeseeable events
in the landscape of smart contract operation. Possible
events could include attacks on the blockchain, oracles that
malfunction, and hacks on the smart contract itself.

(g)	 Contingencies and remedies for smart contract
failure. In the event that a smart contract malfunctions, and
because it is immutable, the parties need to be cognisant
of the options – accept the outcome, remedy the outcome
separately, or kill the smart contract. If it transpires that
a key amendment to the smart contract is needed, the only
means of resolving this is to essentially code and deploy
a new one. This provision should be crafted in to recognise
the possibility of this occurring, and that the parties agree
for a replacement smart contract to be used.

(h)	 Responsibility for obtaining insurance. The
parties may wish to allocate between themselves the
responsibility for taking out appropriate insurance cover
for the foreseeable risks outlined above.

XI.	 Conclusion to Part 1; anticipating Part 2

27	 Ethereum and smart contracts are relatively new and
very experimental technology, and what is certain is that with
increased adoption, new bugs and risks will emerge and security
responses will have to develop around them. While there never will
be a situation where a smart contract will be completely free of
bugs or vulnerabilities, it is possible to mitigate risks by taking into
consideration the practical and legal safeguards discussed above.

28	 This part has focused on the nature and function of smart
contracts as technology products, the security issues presented
by them in the context of their functioning, and the safeguards
that should be taken into account when contemplating their use.
Alongside the issue of security of smart contracts is the concurrent
question of their legal contractual certainty. Bearing in mind
Szabo’s definition of a smart contract as “a set of promises,

© 2020 Contributor(s) and Singapore Academy of Law.
No part of this document may be reproduced without permission from the copyright holders.

[2020] SAL Prac 23

SAL Practitioner

specified in digital form, including protocols within which the
parties perform on these promises”,45 it can be seen in this
language the intermingling of two frameworks of rules governing
behaviour in relation to carrying out obligations and enforcing
promises. How do these two frameworks sit with each other? Are
there sufficient points of convergence between their respective
rules? The smart contract is a type of algorithmic contract, the
formation and execution of which are automated. Fundamental
questions arise as to the existence of a binding contract: Was there
consensus ad idem? To what extent – if at all – can contractual
intention be properly encoded in such contracts, and what does
this subsequently mean for performance? Questions of this nature
arose in the recent landmark case of B2C2, where the Court of Appeal
considered whether a cryptocurrency trading agreement formed
purely through the operation of algorithms constituted a binding
contract, and if so, whether such contract can be unilaterally
cancelled for mistake. A deeper analysis of these questions about
the nature of smart contracts, contracts formed by black box
algorithms, and their contractual validity and enforceability in the
context of the B2C2 decision will be focus of the second part of this
paper.

45	 Nick Szabo, “Smart Contracts: Building Blocks for Digital Markets” (1996)
<https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/
Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.
html> (accessed 13 August 2020).

© 2020 Contributor(s) and Singapore Academy of Law.
No part of this document may be reproduced without permission from the copyright holders.

